首页> 外文OA文献 >Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties
【2h】

Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties

机译:刀具磨损监控和最佳切削条件的选择,具有渐进的刀具磨损效果和输入不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the big challenges in machining is replacing the cutting tool at the right time. Carrying on the process with a dull tool may degrade the product quality. However, it may be unnecessary to change the cutting tool if it is still capable of continuing the cutting operation. Both of these cases could increase the production cost. Therefore, an effective tool condition monitoring system may reduce productioncost and increase productivity. This paper presents a neural network based sensor fusion model for a tool wear monitoring system in turning operations. A wavelet packet tree approach was used for the analysis of the acquired signals, namely cutting strains in tool holder and motor current, and the extraction of wear-sensitive features. Once a list of possiblefeatures had been extracted, the dimension of the input feature space was reduced using principal component analysis. Novel strategies, such as the robustness of the developed ANN models against uncertainty in the input data, and the integration of the monitoring information to an optimization system in order to utilize the progressive tool wear information for selecting the optimum cutting conditions, are proposed and validated in manual turning operations. Theapproach is simple and flexible enough for online implementation.
机译:加工中的一大挑战是在正确的时间更换切削刀具。用钝的工具进行加工可能会降低产品质量。但是,如果切削工具仍然能够继续进行切削操作,则可能无需更换切削工具。这两种情况都会增加生产成本。因此,有效的工具状态监视系统可以降低生产成本并提高生产率。本文提出了一种基于神经网络的传感器融合模型,用于车削操作中的刀具磨损监测系统。小波包树方法用于分析所采集的信号,即切削刀架中的切削应变和电机电流,以及提取磨损敏感特征。一旦提取了可能的特征列表,就可以使用主成分分析来减少输入特征空间的维数。提出并验证了新颖的策略,例如已开发的ANN模型针对输入数据中不确定性的鲁棒性,以及将监视信息集成到优化系统中,以便利用渐进式刀具磨损信息来选择最佳切削条件。在手动车削操作中。该方法足够简单和灵活,可以在线实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号